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Abstract. We calculate the Coulomb pseudopotentialµ∗ for the simple hexagonal phase of Si
at a pressure of 14 GPa using a full-dielectric-matrix approach within the local-density-functional
approximation. With all of the screening effects such as the crystal potential, local-field, and
exchange–correlation effects, the value ofµ∗ is estimated to be 0.104. Considering only the
crystal potential effect,µ∗ is found to be very close to that of a free-electron gas. The exchange–
correlation effect on the electron dielectric response function decreases the dielectric screening,
especially for large wave vectors, giving rise to an increase ofµ∗, while the local-field effect
which results from directional bonds slightly reducesµ∗.

Si undergoes a sequence of structural phase transitions with increasing pressure; a
semiconducting diamond phase changes into a metallicβ-Sn phase at about 10 GPa, and then
transforms into a simple hexagonal (sh) phase at about 13 GPa [1–6]. With further increase
of pressure, successive structural transformations into highly coordinated compact structures
such as hexagonal-close-packed (hcp) and face-centred-cubic (fcc) structures occur [1–3].
All of the metallic phases were shown to be superconducting at low temperatures [7–11],
while the superconductivity of the fcc phase was only predicted theoretically [12]. In theβ-
Sn and sh phases, the superconducting temperatures (Tc) were found to be fairly high, 6.3 and
8.2 K at 12 and 15.2 GPa, respectively [7]. Since the sh phase has both interlayer covalent-
like bonds and intralayer metallic bonds, this structure has soft transverse acoustic (TA)
phonon modes along the [001] direction, which vary sensitively with pressure and induce a
phase transformation into the hcp structure [4, 6]. Because of the directional bonds and soft
phonon modes [7–9], the sh phase was shown to have stronger electron–phonon couplings
and higherTc-values, as compared to otherβ-Sn and hcp phases, although the density of
states at the Fermi level is comparable to that of a free-electron gas. To determineTc, it
is necessary to estimate both the electron–phonon coupling (λ) and the electron–electron
Coulomb repulsion, which is usually represented byµ∗. It is now possible to calculate both
of the parametersλ andµ∗ from first principles [13–16]. In previous work for sh Si [7, 9],
the electron–phonon couplings were calculated for particular phonons along high-symmetry
directions in the Brillouin zone (BZ); however, a spherical average of the momentum-
dependent electron–phonon couplings for the BZ summation was used to determineλ.
Thus, knowing the exact value ofµ∗ is essential for checking the reliability of the methods
of calculation forλ.

In this work, we calculate the Coulomb pseudopotentialµ∗ for Si in the simple hexagonal
phase using a first-principles pseudopotential method within the local-density-functional
approximation (LDA) [17]. Based on the full-dielectric-matrix approach which includes
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crystal-field, local-field, and exchange–correlation effects, the value ofµ∗ is estimated to
be 0.104 for the sh phase at a pressure of 14 GPa. With only the crystal potential effect,
µ∗ is found to be 0.100, which is nearly equal to that of a free-electron gas. We find
that the local-field effect which results from the interlayer covalent bonds slightly decreases
the Coulomb repulsion parameter, while the exchange–correlation effect on the electron
dielectric screening significantly increasesµ∗. Our calculated value forµ∗ is expected
not to change drastically with pressure, because the density of states at the Fermi level is
not sensitive to the variation of pressure, althoughλ was shown to vary significantly with
pressure due to soft TA phonon modes [7–9].

In analogy with the electron–phonon coupling parameterλ, the Coulomb repulsive
interaction between electrons of a Cooper pair is expressed by the repulsion parameter
µ, defined as the Fermi-surface average of the instantaneous screened electron–electron
interaction [18]:

µ = N(0)〈〈V cnk,n′k′ 〉〉FS (1)

whereN(0) is the density of states per spin at the Fermi energyεF , 〈〈 〉〉FS denotes the
Fermi-surface average, andV cnk,n′k′ is the Coulomb scattering matrix element of a Cooper
pair from a state|nk, n− k〉 to |n′k′, n′ − k′〉:

V cnk,n′k′ =
∫

dr dr′ ψ∗n′k′(r)ψ
∗
n′−k′(r

′)V c(r, r′)ψnk(r)ψn−k(r′). (2)

Here the screened Coulomb potentialV c(r, r′) is expressed in terms of the inverse dielectric
function ε−1 and the bare Coulomb potentialV cbare:

V c(r, r′) =
∫

dr′′ ε−1(r, r′′)V cbare(r
′′, r′). (3)

In the case of phonon-mediated superconductivity, the Coulomb repulsion parameterµ is
rescaled toµ∗ due to retardation effects, which are caused by the difference between the
phononic and electronic cut-off energies [19, 20]. Assuming a constant Coulomb scattering
kernel up to the Fermi energy,µ∗ is written as

µ∗ = µ

1+ µ ln(εF /2D)
(4)

where2D is the Debye energy representing the cut-off energy of the phonon-induced
interaction.

To calculate the repulsion parameterµ in equation (1), the electron wave functions
and band energies are generated by the first-principles pseudopotential method within the
LDA. Norm-conserving pseudopotentials are generated by the scheme of Hamann, Schlüter,
and Chiang [21]. The Wigner interpolation formula is used for the exchange–correlation
potential [22]. The valence wave functions and the dielectric matrix are expanded in a plane-
wave basis set with a kinetic energy cut-off of 12 Ryd. The Brillouin zone summations
are performed using a uniform grid of 84k-points in the irreducible sector of the BZ.
Testing the kinetic energy cut-off of 16 Ryd and a grid of 252k-points, we find the bulk
properties of simple hexagonal Si to be well converged. The total energies for the sh phase
are optimized by varying the axial ratio, and are fitted to the Murnaghan’s equation of state
[23]. At 14 GPa, the crystal volume and the axial ratioc/a are estimated to be 13.41̊A3

per atom and 0.939, respectively. The density of states and the Fermi energy are calculated
by the linear tetrahedron method [24] with a set of 84k-points in the irreducible BZ. The
linear tetrahedron method with 84k-points is also used for the Fermi-surface integration
in equation (1). For the Thomas–Fermi screening function, we find that the errors of the
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Figure 1. The band structure and DOS of sh Si are drawn for a crystal volume of 13.41Å
3
/atom

with the axial ratioc/a = 0.939. The horizontal line denotes the Fermi level, and the dotted
curves represent the free-electron band.

dielectric matrix elements are less than 5%, by increasing the number ofk-points up to 440
points, leading to the negligible change ofµ.

The calculated band structure and density of states (DOS) for the sh phase are plotted in
figure 1. The Fermi energyεF and the density of states atεF are calculated to be 15.02 eV
and 0.172 states eV−1 per spin, respectively, as compared to the values of 16.28 eV and
0.184 states eV−1 per spin obtained from the free-electron-gas model. Overall, the band
structure for energies belowεF is similar to that of the free-electron model, while the lowest
four bands along the LH direction of the BZ, which are split by the crystal potential, are
different. The lowest three levels along the LH direction give rise to a large peak in the
DOS atεF − 0.5 eV. We find that this feature is not much changed at higher pressures.
Because no state crosses the Fermi level on the LH axis, the calculated value ofN(0) is
slightly smaller than that of the free-electron model.

The dielectric response function is calculated in momentum space, using the perturbative
approach based on the LDA [17, 25]. For a weak external potentialδφext , the total
internal potential change isδφtot = ε−1 δφext in the abbreviated form. The inverse of
the dielectric matrix (IDM) can be derived by calculating the full polarizabilityχ , which is
related to the independent-particle polarizabilityχ0 by χ = (1 − χ0V

c
bare− χ0Kxc)

−1χ0

[25]. Here Kxc is the functional derivative of the exchange–correlation potential, and
χ0 is directly obtained in terms of the single-particle wave functions and the eigenvalues
of the unperturbed Hamiltonian [26]. The off-diagonal elements of the dielectric matrix,
which constitute the so-called local-field effect, represent the inhomogeneous distribution
of electron charge. In the interacting electron gas, the local-field factorG(q) is often
used for the exchange–correlation effect, and in our calculations this factor is related to
Kxc = −V cbareG(q). Depending on the probe of the response, two different dielectric
response functions can be defined [25]; if the probe is a test charge, the so-called test-
charge (TC) dielectric function is given byε−1

T C = 1+ V cbareχ ; if the probe is constituted by
the electrons themselves, the exchange–correlation interaction between the probe and the
induced charge is additionally included in the screening, and, then, the electron dielectric
function is expressed asε−1

el = 1+ (V cbare+Kxc)χ . We test both of the dielectric functions,
ε−1
T C and ε−1

el , and find thatε−1
el is generally enhanced, as compared toε−1

T C . For a Cooper
pair, since electrons are treated as the probe, it is more appropriate to choose the electron
dielectric function for the screening between the electrons [16].
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Figure 2. The diagonal elements of the static inverse dielectric matrices. In (a), without the
local-field effect, the RPA dielectric functions are compared with the Lindhard functions along
the [001] and [010] directions. The RPA dielectric functions with and without the local-field
effect along the [001] direction are compared in (b). In (c), with the local-field effect (LFE), the
TC and electron dielectric functions are compared along the [001] and [010] directions, while
in (d) the RPA, TC, and electron dielectric functions are plotted along the [001] direction.

In the random-phase approximation (RPA), where the exchange–correlation interaction
is ignored, the dielectric screening is found to be similar to the Lindhard dielectric screening,
as shown in figure 2(a). In this case, since the difference between the RPA screenings along
two different crystal directions, [001] and [010], is very small, the crystal-field effect is
considered to be extremely small. When we include the local-field effect which results
from inhomogeneous charge distributions, the diagonal elements of the static IDM,ε−1

GG(q),
are increased by about 5%, as shown in figure 2(b). With the RPA dielectric matrix,
we investigate the screened Coulomb potential around a point charge−e at r′ with a
test probe−e at r in equation (3). Figure 3 shows the change of the screened potential
from the bare Coulomb potential caused by the local-field effect for two cases, where the
test probes are located at two different bond-centred sites of the interlayer and intralayer
bonds. Since the axial ratio of sh Si was shown to be smaller than one, the interlayer
bonds were considered to be more covalent than those on the hexagonal planes, and these
bonds have more accumulations of the valence electrons, Thus, we find that the electrostatic
screening of the Coulomb potential generated by the added charge in the interlayer bond is
more effective. This feature is well reflected by the off-diagonal elements of the IDM, as
illustrated in figure 3.

On including the exchange–correlation interaction in the dielectric screening (see figure
2(c)), we find that the electronε−1

GG(q)s are larger than the RPA ones, especially for large
wave vectors, while the test-chargeε−1

GG(q)s are smaller. The same screening effect of
the exchange–correlation interaction was also found for Nb [16]. The enhancement of the
inverse of the electron dielectric matrix was attributed to the decrease of the screening, which
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Figure 3. The equipotential lines for the change of the Coulomb potential by the local-field
effect are plotted for two added charges located at the interstitial sites A and B, which are in
the (a) intralayer and (b) interlayer bonds on the (010) and (001) planes, respectively. Circles
denote the Si atoms, and contour spacings are in atomic units.

results from a deficiency of the induced charge around the probe [16]. Since the exchange–
correlation contributionKxc has a short-range character, the reduction of screening in the
electron dielectric function is more significant for large momenta. However, it should
be noted that this reduction of screening is slightly exaggerated in the region of large
momentum, because of the use of the LDAKxc, which is independent of momentum.
In the case of the TC dielectric function, the exchange–correlation interaction effectively
increases the induced charge; then, the Coulomb interaction between the probe and the
induced charge results in more screening.

As discussed earlier, the RPAε−1
GG(q)s are very similar for wave vectors along two high-

symmetry [001] and [010] directions, except for in the region of small wave vectors, where
the screening along the [001] axis is slightly smaller than that along the [010] direction.
This difference is reflected by weak crystal fields, which also broaden the band structure,
particularly along the LH direction. However, if we consider the exchange–correlation
interaction, we find that the screening effect depends more clearly on the direction ofq
(see figure 2(c)). For the TC dielectric matrix, the magnitudes of theε−1

GG(q)s are found
to be larger over the whole range of wave vectors along the [001] direction. On the other
hand, since the electronε−1

GG(q)s are similar to the RPA ones in the small-momentum
region, their magnitudes along the [001] direction are larger for small wave vectors. In this
case, although the screening effect is more significant for large wave vectors on the [001]
axis than that on the [010] axis, their difference might be slightly exaggerated because the
LDA exchange–correlation potential is used. Since the local-field effect depends directly
on the directionality of bonds, its contribution to the dielectric screening is larger for wave
vectors along the [001] direction, where covalent-like interlayer bonds are formed, while
the intralayer bonds on the (001) hexagonal planes are metallic.
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Table 1. The calculated values forµ andµ∗ are given for the Lindhard, RPA, TC, and electron
dielectric screenings. The Debye temperature2D is chosen to be 550 K (reference [27]).

Lindhard RPA TC Electron

Without the local-field effect
µ 0.235 0.238 0.200 0.274
µ∗ 0.100 0.100 0.093 0.106

With the local-field effect
µ 0.225 0.186 0.261
µ∗ 0.098 0.090 0.104

In table 1, the calculated values forµ andµ∗ are listed for the Lindhard, RPA, TC,
and electron dielectric screenings. For the free-electron system, one can estimate the exact
value of 0.230 forµ from the following expression [28]:

µ = N(0)

2

∫ 2kF

0

4πe2 dq

qkF
2εfree(q)

(5)

wherekF is the Fermi wave vector, andεfree(q) is the free-electron dielectric function. To
calculate the Fermi-surface average ofV cnk,n′k′ in equation (2), we use the linear tetrahedron
method for all of the dielectric screenings considered here. In the case of the Lindhard
function, we obtain the value of 0.235 forµ, resulting inµ∗ = 0.100, in good agreement
with the value directly estimated from equation (5). For the RPA dielectric screening without
the local-field effect, the calculated values ofµ andµ∗ are found to be very similar to those
for the Lindhard function, as expected from figure 2(a). When the local-field effect is
included,µ is generally reduced by 5–7%, and similar behaviour was also found for Al and
Nb [15, 16]. On the other hand, the exchange–correlation effect increasesµ by about 15%
for the electron dielectric screening, as compared to the RPA dielectric function. Although
the local-field and exchange–correlation effects compete with each other, the exchange–
correlation contribution is more significant, and compensates for the decrease ofµ by the
local-field effect. In the case of the TC dielectric function, since the exchange–correlation
effect enhances the dielectric screening,µ is reduced by about 16–17%, regardless of
whether the local-field effect is included or not. Including the full screening effects,µ∗

is calculated to be 0.104 for the electron dielectric function. This estimate is close to
the value of 0.10 used in most theoretical calculations to determine the superconducting
transition temperatures of simple metals. Although the electron–phonon coupling has a
large dependence on covalent-like interlayer bonds [7, 9], the dielectric screenings are not
seriously influenced by these.

The electron–phonon coupling constantλ can be determined by taking the average of
the λqs over the entire BZ [7, 13, 29, 30]:

λ = 1

�BZ

∫
λq dq (6)

where�BZ is the volume of the Brillouin zone, andλq is the sum of all of the phonon
branches atq. For sh Si, the electron–phonon coupling constantλ was first calculated using
the first-principles pseudopotential method [7]. In this work, only the [001] direction was
considered, and the averageλ of about 0.4 at a pressure around 13 GPa was obtained using
a spherical approximation to the average in equation (6). From the McMillan equation for
Tc [31], with the use ofµ∗ = 0.104,2D = 550 K, andTc ∼ 7.5 K, we estimateλ to be
about 0.55. Thus, the use of just the [001] direction for obtaining the averageλ seems to
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lead to an underestimate ofλ, indicating a shortcoming of the calculation. This feature was
recognized in later calculations, which showed that, for other high-symmetry directions,
the electron–phonon interaction for theqs along the [011] direction is very different from
that for theqs along the [001] axis, and exhibits a large enhancement ofλ [11]. The
increase ofλ is caused by the soft transverse mode in the sh phase, which is associated
with the structural transformation from sh Sn toβ-Sn. Although it is expected that a full
average in equation (6) will give a better agreement with the one estimated from our present
calculations forµ∗, a complete comparison ofλ requires more accurate calculations ofλq
over the whole Brillouin zone.

In conclusion, we have calculated the Coulomb pseudopotentialµ∗ for Si in the simple
hexagonal phase using the first-principles pseudopotential method. Considering all of
the screening effects, the resultingµ∗ is estimated to be 0.104. The RPA value ofµ∗

without the local-field effect is found to be very similar to that of the free-electron gas,
demonstrating that the crystal-field effect is very small. The local-field effect resulting
from the interlayer covalent bonds increases the dielectric screening, and thusµ∗ is
slightly decreased. However, with the exchange–correlation effect, the electron screening
is enhanced, resulting in the increase ofµ∗.
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